
SQLGrinder
User Guide



©2006 Advenio, LLC. All Rights reserved.

Under the copyright laws, this manual may not be copied, in whole or in part, without the 
written consent of Advenio. Your rights to the software are governed by the accompany-
ing software license agreement.

SQLGrinder is a trademark of Advenio, LLC.

Mac and the Mac logo are trademarks of Apple Computer, Inc., registered in the U.S. 
and other countries. Apple, the Apple logo, AppleScript, and Macintosh are trademarks 
of Apple Computer, Inc., registered in the U.S. and other countries. The "Built for Mac 
OS X" graphic is a trademark of Apple Computer, Inc. used under license. All other 
products and company names mentioned in this document may be trademarks of their 
respective owners.



1. Getting Started with SQLGrinder! 7

Connecting to your database! 7

SQL Editor Highlights! 9

Database Browser Highlights! 10

Adding JDBC Drivers to SQLGrinder! 11

Adding a JDBC driver that SQLGrinder doesn"t know about! 11

Shared Toolbar Tools! 13

2. The SQL Editor! 15

Connecting a SQL Editor to your Database! 16

SQL Editor Toolbar Icons! 16

Executing and Editing SQL Statements! 16

Code completion! 17

Editor buffers! 18

Sending the editor contents to the database! 18

Sending a selection to the database! 18

Sending a block of code to the database! 18

Building procedures and triggers - sending editor code as a script! 19

Displaying result set binary data! 19

The Paste SQL menu! 19

Searching and Sorting Editor Results! 20

Transactions: Committing or Rolling Back an Update ! 21

Exporting Result Set Table Data! 21

Taking a Snapshot of a Result Set! 22

3



Calling Stored Procedures and Functions! 22

Describing Database Tables and Procedures! 23

Other Editor Features: Formatting and Reloading Keywords! 24

3. The Database Browser! 25

Connecting a Database Browser to your Database! 25

Database Browser Icons! 26

Database Browser Toolbar Icons! 26

Navigating and Changing Your Database Schema! 28

Table Meta Data Information! 28

Displaying and Editing the Data in a Table! 28

Displaying the Script for a Table! 29

Procedure Meta Data Information and Code! 29

Importing Data Into a Table! 30

Exporting Data From a Table! 31

The Table Builder! 32

4. Setting SQLGrinder Preferences! 34

Preferences Overview! 34

Browser Preferences! 35

Connections Preferences! 36

General Preferences! 37

Import/Export Preferences! 38

JDBC Driver Preferences! 38

Login Preferences! 39

4



Result Set Preferences! 40

SQL Editor Preferences! 41

Syntax Coloring Preferences! 41

Update Preferences! 42

Specifying the Settings for a Connection! 43

5. SQLGrinder Tools! 45

The SQL Statement Library! 45

Adding SQL statements to the library ! 45

The Library History Group! 46

The Library Menu Group ! 46

SQL Statement Library Toolbar Icons! 46

The Message Log! 47

6. AppleScript and Automator! 49

Using AppleScript and SQLGrinder! 49

Scripts using the SQL editor! 49

Scripts using the database browser! 50

Scripts using the SQL commander! 51

Using Automator and SQLGrinder! 52

Appendix A! 54

Supported JDBC Drivers! 54

DB2! 54

FrontBase! 55

Hypersonic SQL (HSQL)! 55

Mckoi! 55

5



Microsoft SQL Server! 55

MySQL! 56

OpenBase! 56

Oracle! 56

PostgreSQL! 56

Primebase! 57

SQLite! 57

Sybase! 58

Appendix B! 59

Default Database JDBC Ports! 59

6



1. Getting Started with SQLGrinder

This chapter introduces you to SQLGrinder.
Welcome to SQLGrinder! In this chapter, you"ll find out the basics of connecting 
SQLGrinder to your database, executing SQL statements, and browsing your database.

SQLGrinder is a database development environment for people who need to build com-
plex queries and browse their database schemas quickly and easily. With a SQL editor 
that features large editing areas, SQL syntax coloring, and code completion, developing 
and querying your database is made simple.

SQLGrinder"s database browser makes navigating database schemas as easy as 
browsing in the Mac Finder. Column names, index and key information, and table import 
and export tools are all easily accessible.

Connecting to your database
In order to interact with your database, you first must open a new SQL editor or data-
base browser. 

To open a new SQL editor:

Choose File > New > Editor (!N).

To open a database browser:

Choose File > New > Browser (!B).

By default, SQLGrinder will automatically open a SQL editor when the application starts, 
and you will be prompted for your database login information.

The information for connecting to your database in the sheet that slides down when a 
new window is opened, if that option is set in Preferences, or when you press the “Con-

nect” button in the toolbar, or choose Connection > Connect (!K).

7

1



At the top of the sheet is the Login pop up menu with the list of your current saved log-
ins. This menu will be empty the first time you run SQLGrinder. Next to the Login pop up 
menu is the “Add login to favorites” button, which saves the information entered in the 
sheet to the list of saved logins.

To connect to your database:

1. Enter your user name into the User field.

2. Enter your password into the Password field

3. Choose the JDBC driver for your database from the Driver pop up menu. By default 
SQLGrinder comes with drivers for FrontBase, MySQL, OpenBase, Oracle, Post-
greSQL and Sybase. If you need to connect to another database, like Microsoft SQL 
Server, follow the instructions in “Adding JDBC Drivers to SQLGrinder” below.

4. Enter the address or name of your database server in the Host field.

5. Enter the name of your database in the Database field. (Oracle users: see the re-
lated note below.) If desired, you can look up the databases on a server by entering 
all of the login information except the database name, and pressing the “Lookup da-
tabase names” button next to the Database field.

6. Enter the port for your server into the Port field. Default ports are listed in Appendix 
B.

7. Press the Connect button.

8



Alternatively, you can press the checkbox next to the URL field to collapse the login 
sheet, and enter in the full JDBC URL by hand. This is useful when a database driver 
uses a non-standard URL that SQLGrinder doesn"t support directly.

<LOGIN URL SHEET IMAGE>

If, after pressing the “Connect” button on the login sheet, you weren"t able to connect to 
your database, you can check the Message Log for any error messages by choosing:

Tools > Show Message Log ("!M or shift-!-M).

Common connection problems are usually caused by incorrect port specifications, 
wrong user names or passwords, or attempts to connect to servers that are not running 
a database.

Once your editor or browser is successfully connected to your database, you can then 
enter a SQL query, or browse your schema.

SQL Editor Highlights
Code Completion

• To access code completion for keywords, table names, and column names, start 
typing something and press the Escape (esc) key. This will show the list of poten-
tial matches, based on the current word you were typing. To select something from 
the list, use the up and down arrow keys and press return. If there is only one 
match, that match will be entered into the editor for you automatically.

Searching

• You can search the current result set by selecting the column from the toolbar 
search field and typing the value you want to search for.

Sorting

• You can sort the result set by clicking on any of the result set column headers.

Oracle Note: Oracle"s JDBC driver, by default, returns the entire database schema, 

which has more information than is usually desired. Because of this, the database for 

Oracle should be specified using SID:schema instead of just entering the SID. For exam-

ple, if the database SID is DEVDB and you want to connect to the SCOTT schema, you 

should specify the database in the login sheet at DEVDB:SCOTT instead of just DEVDB.

9



Exporting Information

• You can drag a selection from the result set table to another Mac application, or to 
the desktop to export the selection. You can also choose File > Export... to export 
the entire result set to a text file.

Database Browser Highlights
Browsing

• You can browse the database structure in the list on the left. When a table is se-
lected, the bottom panel will display a set of tabs that allows you to view the col-
umns, indexes, columns making up the primary key, foreign keys, data and the 
script that can be used to create the table. When a procedure is selected, the bot-
tom panel will display a set of tabs that allows you to view the parameters and text 
of the stored procedure.

Creating, dropping, and truncating tables

• This is done by selecting the table in the Elements list and choosing the appropri-
ate menu or toolbar item.

Dropping procedures

• You can also drop a stored procedure by selecting it and choosing Browser > Drop 
Procedure.

10



Adding JDBC Drivers to SQLGrinder
For most common JDBC drivers that aren"t already included, not much is required to 
add it them to SQLGrinder. SQLGrinder comes pre-configured with the information for 
loading the most commonly used drivers, so all you have to do is take the jar or zip file 
that contains the driver and put it in the

Library/Application Support/SQLGrinder 

folder in your user folder. When you restart SQLGrinder, you should find your driver 
listed in the Driver pop up menu in the login sheet. Alternatively you can also place your 
driver in one of the following locations:

• User home: ~/Library/Java/Extensions

• Local domain: /Library/Java/Extensions

• Network domain: /Network/Library/Java/Extensions

• System domain: /System/Library/Java/Extensions

Adding a JDBC driver that SQLGrinder doesn"t know about
From time to time you may need to use a JDBC driver that SQLGrinder isn"t already 
configured to use. Adding this knowledge to the application requires adding a new entry 
in the JDBC preferences pane.

11



While SQLGrinder should work with any driver that supports at least JDBC 2.0, the built 
in driver configuration database doesn"t know about every possible driver available. 
New drivers require that the configuration information be specified manually after adding 
the new driver file to one of the driver locations listed above.

To add a new driver:

1. After adding a new driver to one of the listed locations, launch SQLGrinder, if it"s not 
running, and open Preferences by choosing SQLGrinder > Preferences. Click on the 
“JDBC Drivers” icon found in the Application section of the Preferences window.

2. Press the Add button to display the sheet shown above, and enter the values for 
name, base class, and url prefix. The Name is the label you want to to appear in the 
driver popup menu. The Base Class is the name of the main JDBC driver class. The 
URL Prefix is the first part of the JDBC url as specified by the driver developer. You 
can usually find this information in the developer documentation accompanying the 
driver.

3. After entering the information, you can try loading the driver by pressing the “Test” 
button. This will try and load the driver, and if it was configured correctly, display the 
location in the “Location” text area.

 As an example, these are the entries for the Oracle 9i JDBC driver:

Note: You will usually not be required to add a JDBC configuration yourself. SQLGrinder 

comes configured to load most common JDBC drivers. You only need to add a configura-

tion yourself if you put the driver in one of the specified locations and it"s not found and 

loaded.

12



• Name: Oracle 9i

• Base class: oracle.jdbc.OracleDriver

• URL: jdbc:oracle:thin

For a full list of currently supported JDBC drivers, see Appendix A.

Shared Toolbar Tools
The following toolbar tools are common to both the SQL editor and the database 
browser. They can be added or removed by choosing View > Customize Toolbar... 
Choosing this menu item presents a sheet that allows tools to be dragged onto the tool-
bar to add them or dragged off to remove them. 

Commit Commits the current open transaction.

Connect
Displays the login sheet so that the login information 
can be entered.

Disconnect Closes the current open connection.

Export
Exports the current result set or selected table to a 
file.

New Browser
Creates a new browser instance, connecting it to the 
same database as the parent.

New Editor
Creates a new editor instance, connecting it to the 
same database as the parent.

Rollback
Undoes any changes for the current open transac-
tion.

Settings
Displays the settings for the current open connec-
tion.

Show Info
Displays the JDBC information for the current open 
database connection.

Show Library Displays the SQL Statement Library window.

Show Message Log Displays the Message Log window.

13



Search
Allows columns of a result set or table to be 
searched, showing all rows or elements that match.

Stop Stops the current running process.

14



2. The SQL Editor

This chapter describes the features and usage of the SQL editor.
The SQLGrinder Editor is used to create, edit, save, and open your SQL queries. Edi-
tors can be saved and opened as ASCII text or as SQLGrinder documents that also 
save your tabs, syntax coloring etc. Each document can include one or many queries, 
and queries can either be sent to your database one at a time, or as a series of semi-
colon separated commands.

After executing the text of a query, the results are displayed in a table at the bottom of 
the editor. Once the table is populated, the data can be saved to a text file. A “snapshot” 
of the result set table contents can also be viewed in a table in another window by click-
ing the Snapshot button.

15

2



Connecting a SQL Editor to your Database
To connect to a database, choose File > New Editor (!N). This will open a new SQL 
Editor.  

Alternatively, a new connection to a database can be created using the connection in-
formation from an already open connection. To do this, choose File > New > Editor Us-

ing Current ("!N or shift-!-N) or File > New > Browser Using Current ("!B or shift-

!-B) commands. A tool can also be added to the toolbar that will do this as well. 

Once connected to a database, an editor or database browser will show a green status 
indicator in leftmost position of the status indicator panel. This indicates that there is 
currently an open and functioning database connection.

SQL Editor Toolbar Icons 
The following tools are available on the SQL Editor toolbar. They can be added or re-
moved by choosing View > Customize Toolbar... Choosing this menu item presents a 
sheet that allows tools to be dragged onto the toolbar to add them or dragged off to re-
move them. 

Execute
Executes the contents of the editor, sending each 
semi-colon delimited statement to the database 
one at a time.

Execute Script
Executes the entire contents of the editor buffer as 
one script.

Take Snapshot
Creates a copy of the current result set, and dis-
plays it in another window.

Executing and Editing SQL Statements 
There are many different ways to execute statements from the SQL Editor. When SQL 
code is sent to your database, semi-colon separated commands are sent one at a time, 
and each result set is added to the list of result sets in the editor Result Set Drawer. To 

see your results, show the drawer by choosing View > Show Result Set Drawer (#!R 

or option-!-R). Result sets are listed from most recent to least recent.

16



Code completion
Keywords and table, column and procedure names are available while typing by press-
ing the escape key at any time while editing your SQL code. If there is more than one 
match, a window is displayed with your choices. Each type of match is marked with an 
image designating the type of command it is.

Database or SQL-99 keyword

Table column name

Table name

Procedure name

The choices can be narrowed down when the completion window is visible, by pressing 

the control ($) key to limit matches to table names, the command (#) key to limit 

matches to column names, and the shift (") key to limit matches to keywords. While 
the completion window is open, you can also navigate the list of matches by using the 
up and down arrow keys, and you can select the string you want by pressing return. If 
there are no matches, you will hear  your system alert sound when you press escape.

Finally, the code completion window can be dismissed by pressing the escape key a 
second time.

17



Editor buffers
Each editor allows you to work in one or many workspaces, or buffers. Each buffer has 
it"s own result set list, and code space. This means that you can easily work on multiple 
blocks of SQL code in the same editor window. To create a new buffer, choose View > 

Tabs > New (!T). Switching from one buffer to another is done by choosing View > 

Tabs > Next (#!% or option-!-right arrow) and View > Tabs > Previous (#!& or 

option-!-left arrow). Additionally you can close, rename and merge tabs.

Sending the editor contents to the database
To execute the entire contents of a SQL Editor as a query, enter the text into the editor 
text view and click the Execute toolbar button or choose Editor > Execute Statements 

(!-E). Doing any of these actions will send the entire contents of the editor window to 
the database to be executed. Additionally, pressing the Enter key will send the entire 
contents of the buffer to the database.

Sending a selection to the database
Selections in the editor window can be executed by selecting the text of a  SQL state-
ment and pressing the Execute toolbar button, or by choosing Editor > Execute State-

ments (!-E). Doing any of these with text selected will only send the text that is se-
lected to the database.

Sending a block of code to the database
The current white space delimited block of text that contains the insertion point can also 

be sent to the database by choosing Editor > Execute Block (!' or !-enter). In the 
image below, the cursor is currently located in the second block of text. Using Execute 
Block now will send just the text of that block to the database. This makes it easy to 
work with many smaller code blocks in one editor without having to have multiple editor 
windows or buffers open.

18



Building procedures and triggers - sending editor code as a script
Normally, sending the entire contents of an editor to the database will result in semi-
colon delimited statements being split into separate commands and executed one at a 
time. When developing stored procedures and triggers however, this is not the desired 
behavior. Building these requires that the entire editor buffer get sent as one command. 

Accomplishing this is done by choosing Editor > Execute as Script (#!P or option-!-
P) editor.

Displaying result set binary data
When your editor result set includes columns that have binary data, you can view this 
data using the Binary Data Drawer, which can be opened by choosing View > Show Bi-

nary Data Drawer (#!B or option-!-B). When this view is visible, you can display your 
binary data by selecting a row and choosing the column that you want to display from 
the Column pop up menu at the bottom of the view. If your data is an image, select the 
Image tab. If it is text, select the Text tab and then select the proper text encoding from 
the Encoding pop up menu.

The Paste SQL menu
The editor features a configurable menu that allows you to quickly paste often used 
SQL statements into the text view. To access this menu, right-click (or ctrl-click) any-
where in the editor text area. To paste something, choose one of the SQL statements 
from the menu or submenu. 

19



To add a new statement to the Paste SQL menu:

1. Select the Menu group in the SQL Statement Library.

2. Create a new statement in this group, or in a sub-group. New statements can be 
added to the group directly, or dragged in from other groups. Text can also be 
dragged to the group from an editor.

3. To set the title of the menu item, make the first line of the statement a comment such 
as: -- Select all customers and the menu item will have this as a title (mi-

nus the leading comment characters).

The following can also be done to add a menu item to this list:

1. Select text in the editor.

2. Right-click (or ctrl-click) in the editor to display the contextual menu.

3. Choose Add to Paste SQL Menu, and the text will be added to a new submenu, if 
necessary, with the name of the current login.

Searching and Sorting Editor Results
Each SQL editor features client-side searching and sorting. Once a result set has been 
loaded, searching is as simple as choosing a table column to search on in the toolbar 
Search field, and typing the string you want to search for. You can also choose “All col-
umns” and search for a string across all of the columns in the result set, rather than lim-
iting your search to one.

20



To sort your result set, click on the table header of the column you want to sort, and the 
result set will be resorted, without having to communicate with your database.

Transactions: Committing or Rolling Back an Update 
SQL statements can be selectively committed or rolled back. If the database an editor is 
connected to allows transactions, and the Preferences > Connections > Commit after 
every statement checkbox is checked, the Rollback and Commit buttons and the related 
menu items will be enabled. When an insert, update, delete or create is executed and a 
transaction is opened, a blue status indicator is shown in the center position of the 
status indicator panel. If an open transaction is closed, the open transaction indicator is 
then cleared. Note that the transaction behavior can also be set on a per-connection 
basis by setting it in the settings for an open window, by choosing Connection > Show 

Settings ("!K or shift-!-K).

Exporting Result Set Table Data 
When a result set table is populated with data from a query, the data can be saved to a 
text file by pressing the Export toolbar button, or choosing File > Export... 

The results of a query can also be saved directly to a file by choosing Edit > Execute to 
File. If more than one semi-colon separated statement is sent to the database, a prompt 
for each result set will be displayed, so that the name and location of the export file can 
be entered.

21



Alternatively, you can select rows in the result set and either drag them to the desktop, 
or to another application. The data will be exported as text, using the column delimiter 
value of the “Copy column delimiter” setting in Import/Export preferences. Note that this 
method is best used for exporting small subsets of data, rather than the entire result set.

Taking a Snapshot of a Result Set 
There are times when it is desirable to temporarily save the data of a result set “off to 
the side” of an editor window. The snapshot feature accomplishes this. If the SQL Editor 
has a current result set, the data in this result set can be copied to a temporary snap-
shot window. This is done by pressing the Snapshot button in the Toolbar or by choos-

ing the Editor > Snapshot menu item ("!T or shift-!-T).

What good is a snapshot window? It"s a useful tool when you want to have many result 
sets open, say for database types or other related data, but don"t want to use whole edi-
tors and their associated database connections, to do it.

Snapshots queries can be displayed, refreshed and searched as well.

Calling Stored Procedures and Functions 
When connected to Oracle, Sybase or Microsoft SQL Server, the SQLGrinder editor al-
lows functions and stored procedures to be called by using the editor 'call' command:

Procedures

22



! call procedure_name(var1, var2, ... varN)

Functions

! call function_name(var1, var2, ... varN)

or

! call function_name var1, var2, ... varN

The previous descriptions are examples of procedures that return either nothing, or one 
return value.

You can, however also call procedures that have out or in/out parameters as in the fol-
lowing example which shows a simple Sybase stored procedure, with one return value, 
one int IN parameter, and one string IN/OUT parameter...

create procedure sp_callableSample(
! @p1 int, @p2 varchar(255) out) as
begin
! select @p1, @p2
! select @p2 = 'Monkey'
! return 42
end

calling this in the editor using the following #call" command...

call sp_callableSample(20, 'testing')

results in three result sets being returned and added to the Result Set Drawer. The first 
result set, labeled “@p2” in the list of result sets, contains the updated p2 parameter 
value passed in. The second result set, labeled “Function return value” in the list of re-
sult sets, contains the return value, which in this example case is 42. Finally the third 
result set, labeled “Returned result set 0” contains the results of the first select state-
ment.

Describing Database Tables and Procedures
The SQLGrinder editor allows the display of table column and procedure parameter in-
formation using the 'desc' command:

desc procedure storename_proc

will display a result set containing the parameters for storename_proc. This com-
mand:

23



desc table authors

will display the column information for the authors table.

Other Editor Features: Formatting and Reloading Keywords
Rounding out the editor features are commands to uppercase and lowercase selected 
text, and to shift text left and right. To apply any of these commands, just select the text 
that you want to change, and then choose the desired Editor menu command. 

• To uppercase the selected text choose Editor > Make Uppercase (!+).

• To lowercase the selected text, choose Editor > Make Lowercase (!-). 

• To shift the selected text left, choose Editor > Shift Left (![).

• To shift the selected text right, choose Editor > Shift Right (!]).

24



3. The Database Browser

This chapter describes the features and usage of the database 
browser.
The SQLGrinder database browser allows easy navigation of a database schema"s 
elements, such as tables, procedures, triggers and sequences. When a browser is con-
nected to a database, the database structure is parsed to generate a browser represen-
tation. This representation is based on the JDBC schema of top level catalogs that in-
clude schemas, tables and procedures, and schemas that include tables and proce-
dures.

Connecting a Database Browser to your Database
To connect to a database, choose File > New Browser (!N). This will open a new Da-
tabase Browser.  

25

3



Alternatively, a new connection to a database can be created using the connection in-
formation from an already open connection. To do this, choose File > New > Editor Us-

ing Current ("!N or shift-!-N) or File > New > Browser Using Current ("!B or shift-

!-B) commands. A tool can also be added to the toolbar that will do this as well. 

Once connected to a database, an editor or database browser will show a green status 
indicator in leftmost position of the status indicator panel. This indicates that there is 
currently an open and functioning database connection.

Database Browser Icons
The following icons represent nodes and elements in your database schema.

Catalog

Group

Table

Schema

Procedure, trigger, sequence

Database Browser Toolbar Icons
The following tools are available on the database browser toolbar. They can be added 
or removed by choosing View > Customize Toolbar... Choosing this menu item presents 
a sheet that allows tools to be dragged onto the toolbar to add them or dragged off to 
remove them.

Drop Table Drop the selected table from the schema.

Edit Table Alter the selected table. (Not implemented)

Import Import data into the selected table.

New Table Add a new table to the schema.

26



Reload
Reload the schema, or the selected schema ele-
ment.

Truncate Table
Truncate the selected table, removing all table 
rows.

27



Navigating and Changing Your Database Schema
After the structure is parsed, the database components can be browsed by clicking on a 
branch in the browser “Groups” tree on the left.

Clicking on an element in the browser that has no children, such as a table, will display 
a set of tabs for that element. Once a tab is displayed, clicking on any other database 
object in that column will update the data in the tab automatically, making it easy to 
browse the columns of a list of tables, for example. Additionally, if you double-click on a 
browser element, any associated script for the element will be opened in a SQL editor.

Table Meta Data Information
The browser allows you to easily view the meta data, such as column and primary key 
information, for a table.

The Columns tab, when visible, displays the columns and associated information for a 
table. The Indexes, Primary Key and Foreign Keys tabs are very similar to the Columns 
tab. 

Displaying and Editing the Data in a Table
The Data tab displays the data in the table. To sort a column of data, click on the col-
umn header. One click on the column header will sort the table data by that column in 
ascending order. The next click will sort the data by the clicked column in descending 
order.

28



The data in the selected table can be edited if it has at least one primary key. When a 
table"s data can be changed, an icon with a pencil is displayed next to the Load or Re-
fresh button. To edit data, double-click on a cell, change the value and press “return” or 
“enter.” Commit the transaction, to save any changes, if an transaction is open.

Like result sets in the editor, the data table can be searched by selecting a column in 
the Search field and typing a string.

To enter in a null value, or an empty string, clear the cell and press the “enter” key. This 
will display a prompt asking for the value to be inserted into the table.

Tables with no primary key are not able to be changed because there can be no guaran-
tee that JUST the desired row will get updated.

Displaying the Script for a Table
The Script tab displays a script that can be used to describe and create the selected ta-
ble.

Procedure Meta Data Information and Code
When a procedure is selected in the browser, you are presented options of viewing both 
the parameter information, and for Oracle, Sybase and Microsoft SQL Server, the actual 
source code for the procedure.

29



Importing Data Into a Table
Data can be imported into a selected table by pressing the Import toolbar button or 
choosing File > Import... When the command is issued, you are first prompted for the 
file to import.

Next, a sheet is displayed with various import options. Here you must set whether or not 
the file has column names as the first row, and the delimiter that was used in the file. 
You also must make sure that the existing table columns match up with the import col-
umns in the file.

30



Once the information has been specified correctly, press the Import button to start the 
import.

Exporting Data From a Table
Data can be exported from the current table by pressing the Export toolbar button or 
choosing File > Export... When the command is issued, you are first prompted for the 
columns to export. 

31



To export data, select the desired columns for export from the pop up menus in the first 
column of the export sheet. If desired, you can add and remove columns from your ex-
port set by pressing the Add or Remove buttons to the left of the table. 

Simple criteria can also be specified for your export. To specify a restriction on an export 
column, enter the restriction in the table column labeled “Criteria”. The following are ex-
amples of the kinds of export restrictions that can be entered:

< 100 Export only rows where the integer column values are 
less than 100

>= 1000 Export rows where the integer column values are 
greater than or equal to 1000

= 'new' Export rows where the column values are equal to 'new'

like 'Fred%' Export rows where the string column values are similar 
to any value that starts with the substring 'Fred'

All of the common operators can be used as a restriction, such as <, >, <=, >=, !=, =, 
like, etc.

Additionally, you can specify the delimiter to get used between columns, and whether or 
not to include the column names as the first data row.

Once the columns have been selected, and any restrictions specified, press OK to be-
gin the export.

The Table Builder
The browser includes an assistant, called the Table Builder, that makes it easy to create 
new database tables.

32



In the table builder, the table name, columns and indexes can be specified to create a 
new table. After specifying the name for the table, columns can be added and deleted, 
and the meta data entered, on the “Columns” tab. Indexes can be specified on the In-
dexes tab, after columns have been added, by selecting the columns to be indexed. Fi-
nally the Script tab displays the script that will be used to create the new database table.

33



4. Setting SQLGrinder Preferences

This chapter discusses preferences and explains how to change 
the default preference settings.

Preferences Overview
The following is an overview of the SQLGrinder preferences categories.

Browser Set preferences for the database browser.

Connections
Preferences for connections. Set statement, com-
mit and wake from sleep behavior.

General
General application preferences. Specify Java VM 
and window settings.

34

4



Import/Export
Import and Export preferences. Set column delim-
iters and batch settings.

JDBC Drivers
JDBC driver configurations. View, edit and add 
JDBC drivers.

Logins
View, edit  and add database logins and change 
login settings.

Result Sets
Preferences for result set tables. Set the appear-
ance and date format.

SQL Editor
Set preferences for the SQL editor. Set the editor 
font, command history size and tab close confir-
mation.

Syntax Coloring
Enable and disable syntax coloring and set the 
colors for keywords.

Update Update check settings.

Browser Preferences
Set preferences for the database browser.

• Cache Settings

• Disk Cache - Save a cached version of the schema to disk for browsing offline.

• Data Tab Settings

35



• Automatically fetch data when tab is selected - When the data tab is selected in the 
browser, automatically load all of the rows for the table.

Connections Preferences
Preferences for connections. Set statement, commit and wake from sleep behavior.

• Statement Settings

• Maximum rows to fetch - If enabled, limits the number of rows fetched to the speci-
fied value.

• Rows in each fetch - If enabled, grabs the specified number of rows in each data 
fetch. A larger number can reduce database data “roundtrips” and speed data re-
trieval.

• Query timeout - If enabled, times out a query after the specified number of sec-
onds.

• Login timeout - If enabled, times out a login attempt after the specified number of 
seconds. 

• CLOB/BLOB limit - If enabled, limits CLOBs and BLOBs to the size specified.

• SQL Commit

• Commit after every statement - If checked, automatically commits after every 
statement (auto commit).

36



• Prompt for commit when closing window - If a transaction is open, window prompts 
for commit when it is closed.

• Wake From Sleep Behavior

• Ask to return to working online - When the application is activated after computer is 
woken from sleep, ask to reconnect any connections that were open when com-
puter was put to sleep.

General Preferences
General application preferences. Specify Java VM and window settings.

• General Settings

• Initial Java heap size - Sets the initial size of the memory heap that the Java VM 
uses.

• Maximum Java heap size - Sets the maximum size of the memory heap that the 
Java VM uses. Increase this value for larger data sets.

• Compatibility - Set application mode to be compatible with JDBC drivers that do 
not support JDBC 2 features, using only simple JDBC calls.

• Window settings

• Cocoa behavior - Automatically open a new SQL editor when the application starts 
or comes to the foreground and there is no open editor.

• Open at launch - Open the specified windows at application start.

37



Import/Export Preferences
Import and Export preferences. Set column delimiters and batch settings.

• Copy column delimiter - The column delimiter for result set table data that is copied, 
by choosing Edit > Copy, or dragged.

• Export column delimiter - The default column delimiter for result set table data that is 
exported by choosing File > Export...

• Batch importing - When checked, sets the row batch size sent to the database in each 
“roundtrip.” Using batches for imports is often faster, and limits data transmission time.

JDBC Driver Preferences
JDBC driver configurations. View, edit and add JDBC drivers.

38



• Driver Specifications - Allows JDBC driver configurations to be created, removed and 
modified. Allows the JDBC driver base class, url prefix and status to be set. Specifica-
tions colored in blue are built-in, and cannot be modified or deleted.

• Driver Load Locations - Specifies the locations used to look for and load JDBC drivers. 

Login Preferences
View, edit  and add database logins and change login settings.

39



• Login Maintenance - Allows logins to be created, removed and modified. Setting the 
name of a login changes the label used in the login sheet, SQL statement library and 
Paste SQL menu.

• Options

• Display login sheet when new window is opened - If checked, automatically dis-
plays the login sheet when a new editor or browser is opened.

• Remember login passwords - If checked, saves login passwords entered to the 
system keychain.

• Ask to save new successful logins - If checked, a prompt is displayed that asks to 
save the login information when a new connection to a database is successful.

Result Set Preferences
Preferences for result set tables. Set the appearance and date format.

• Appearance

• Shade alternate rows - If checked, every other row in a result set is colored.

• Draw grid lines - If checked, lines are drawn between each row in a result set.

• Size columns to fit - If checked, columns are sized to their contents, if possible, up 
to a maximum size.

• Display <null> for NULL values in tables - If checked, when a cell value is NULL, 
the string <null> is displayed to show that this is the value.

40



• Date format - Displays data objects in result set columns using the specified prede-
fined formats, or the specified custom format.

SQL Editor Preferences
Set preferences for the SQL editor. Set the editor font, command history size and tab 
close confirmation.

• Editor Font - Specifies the font to be used in any SQL editor or SQL display view.

• Settings

• Command history size - Specifies the number of result sets to maintain in the result 
set history drawer.

• Confirm tab close - If checked, prompts the developer before a tab is closed.

Syntax Coloring Preferences
Enable and disable syntax coloring and set the colors for keywords.

41



• Enable syntax coloring - If checked, enables syntax coloring for standard SQL syntax.

• Keywords - Specifies the color for the standard SQL keywords.

• Comments - Specifies the color for comments.

• Strings - Specifies the color for strings.

• String Literals - Specifies the color for string literals.

• Color schema elements - If checked, enables syntax coloring for schema table and 
procedure elements. If checked, table names, table columns, procedure names, and 
procedure parameters are all fetched from the database in a background thread, and 
used for colorization.

• Table names - Specifies the color for table names.

• Table columns - Specifies the color for table column names.

• Procedure names - Specifies the color for procedure names.

• Procedure parameters - Specifies the color for procedure parameters.

Update Preferences
Update checking settings.

Specifies whether or not to check for a newer version of the application when it starts. 
No information is sent. The only data transmission is the retrieval of the latest version of 
the application from the Advenio web server, which is then compared to the current ap-
plication version.

If set to Manually, the check is only done when the “Check Now” button is pressed. If set 
to “Automatically at startup” then the server is checked every time the application is 

42



started. If set to check, the check is only done once for the current 24 hour time period, 
rather than checking each time the application is launched in a single day.

Specifying the Settings for a Connection
SQLGrinder allows connection settings to be specified on a per-window basis for the life 

of the connection. This can be done by choosing Connection > Show Settings ("!K or 

shift-!-K) when an editor or browser with an active connection is the frontmost window.

• Maximum rows to fetch - If enabled, limits the number of rows fetched to the specified 
value.

• Rows in each fetch - If enabled, grabs the specified number of rows in each data 
fetch. A larger number can reduce database data “roundtrips” and speed data re-
trieval.

• Query timeout - If enabled, times out a query after the specified number of seconds.

• Compatibility - Set application mode to be compatible with JDBC drivers that do not 
support JDBC 2 features, using only simple JDBC calls. 

• Auto Commit - If checked, automatically commits after every statement (auto commit).

To use the settings once, set the values. They will be used just for the current window 
as long as that window remains open. To use these settings for any window that con-
nects to a database using the user name and server information, press the Save button.

43



To clear the settings, and go back to using the application defaults, press the Reset but-
ton. The Reset button being enabled signifies that custom settings are currently being 
used for the user name and database specified in the login sheet.

44



5. SQLGrinder Tools

This chapter describes the SQL statement library and the mes-
sage log.

The SQL Statement Library
SQLGrinder provides an easy way to save and reuse SQL statements: the SQL state-
ment library. The library allows SQL statements and any other text to be stored, 
grouped, and edited. Additionally, it also maintains the history list that displays all of the 
SQL statements sent to databases during a session. Finally, the library provides the 
means to configure the SQL Paste menu for the SQL editors.

Adding SQL statements to the library
There are various ways to add SQL statements to the library:

45

5



• Drag text from an editor or another application, to a selected library group.

• Select a library group and choose Edit > Paste to add text copied from an editor, or 
another application.

• Create a new statement by choosing Tools > SQL Statement Library > New State-
ment or by pressing the “New Statement” toolbar tool.

The Library History Group
The SQL statement library maintains a group with all of the SQL statements send suc-
cessfully to any database during a current SQL session. Within the “History” group are 
subgroups with the names of the database logins that were used to send the state-
ments. For instance, if a login named “Customer Database” was used to connect to a 
database and send a SQL statement, then that SQL statement would be found in a His-
tory subgroup named “Customer Database.” The History group cannot be modified, and 
it is cleared each time SQLGrinder is restarted. Statements can, however, be dragged 
from the History group to other groups and can be copied to the system pasteboard.

The Library Menu Group
SQL editors have a menu that is displayed whenever the right mouse button is clicked 
(or the ctrl and mouse button are clicked) on the text area, named “Paste SQL.” This 
menu is configured using statements saved in the library. Modifying this menu is done 
by modifying the Menu group. To make changes, add and remove SQL statements to 
this group. Subgroups can also be added to the menu group. These subgroups will ap-
pear as submenus in the Paste SQL menu. The menu item name displayed for a state-
ment can be set by making the first line of the SQL statement a comment.

SQL Statement Library Toolbar Icons
The following tools are available on the SQL statement library toolbar. They can be 
added or removed by choosing View > Customize Toolbar... Choosing this menu item 

46



presents a sheet that allows tools to be dragged onto the toolbar to add them or 
dragged off to remove them.

Delete
Deletes the selected SQL statement or group from 
the library.

Execute
Opens a new editor setting the contents to the se-
lected statement and executes it displaying any 
results.

New Statement Add a new statement to the library.

New Group Add a new group to the library.

Open
Opens a new editor setting the contents to the se-
lected statement.

The Message Log
The Message Log displays messages generated while using SQLGrinder. The mes-
sages can be error messages from the database or application generated messages. 
When a message is added to the log, the time it was generated is stored along with it.

The message log can be shown by choosing Tools > Message Log. It can be cleared by 
selected any number of messages and pressing the Delete key on the keyboard.

47



When a new message is added to the message log, and the log is not in the foreground, 
a red status indicator is displayed in any open editor or browser. This is to show that 
new messages were added to the log. Bringing the Message Log to the foreground will 
clear the status indicator until another new message is added. The unread messages 
status indicator can also be cleared by choosing Tools > Clear Unread Messages.

48



6. AppleScript and Automator

This chapter introduces you to SQLGrinder"s AppleScript and 
Automator support.
SQLGrinder features full support for AppleScript, using AppleScript Studio and Automa-
tor.

Using AppleScript and SQLGrinder
SQLGrinder provides an AppleScript interface that allows windows and data to be ma-
nipulated using AppleScript, AppleScript Studio and Automator actions. Using Ap-
pleScript, editors and browser windows can be opened, connected, disconnected, and 
closed, and data can be fetched and manipulated. SQLGrinder can also be used as a 
faceless conduit that AppleScript applications can use to communicate with any data-
base with a JDBC driver. With SQLGrinder running, AppleScript scripts, applications 
and Automator actions can use it to send and receive data without opening any win-
dows or requiring any user actions.

Scripts using the SQL editor
This section describes ways to use and manipulate an open, existing and connected 
SQL editor. Information for making database connections is always specified using the 
name of a Login. 

The editor supports the editor row count command, from the SQLGrinder suite, which 
returns the number of rows in the current result set.

(* Get the count of the rows in the result set *)

set rowCount to editor row count

The editor also supports the editor result set columns command, also in the 
SQLGrinder suite, which returns the names of the columns in the result set.

(* Get the column names list *)

49

6



set columnNames to editor result set columns

The editor result set command returns a reference to the result set itself, in the form 
of an array of arrays. The outer array is the array of rows. The inner arrays are the col-
umn values. You can loop through the rows and columns of the result set arrays using 
the following example:

(* Get the current result set from the editor *)

set resultSet to editor result set

set columnCount to length of columnNames

(* Loop through the columns of the result set, building a string of comma 

delimited rows separated by returns *)

repeat with i from 1 to rowCount

 repeat with j from 1 to (columnCount - 1)

  set row to row & item j of item i of resultSet & ", "

 end repeat

 set row to row & item (j + 1) of item i of resultSet & return

end repeat

A file with this example, named “Process Result Set Example”, can be found in the 
SQLGrinder AppleScript Dev Kit.

Scripts using the database browser
This section describes ways to retrieve schema data using the database browser.

(* Select the object in the browser with the specified path. Path looks like: 

    /category/schema/type group/object. NOTE: case matters

*)

select object with path "/APP/tables/orders"

(* Get the list of table names. % is a wild card character. *)

get table names catalog "%" schema "%" table name "%"

(* Get the list of the schemas *)

get schemas

  

(* Get the names of the columns for the table 'customer'. % is a wild card 

    character *)

get table column names catalog "%" column name pattern "%" schema "%" 

 table name pattern "customer"

  

(* Get all of the column information for the table 'customer'. % is a wild card 

50



    character *)

get table columns catalog "%" column name pattern "%" schema "%" table 

 name pattern "customer"

Scripts using the SQL commander
This section describes using the SQL commander to get data. The SQL commander al-
lows the use of SQLGrinder as an AppleScript client, without needing any open editors 
or browsers to do the work. This can be thought of a the “faceless” mode for 
SQLGrinder. The following command sends a select statement to the database, con-
necting using the login named “My Database Login” and using the “,” character as a de-
limiter between columns.

execute sql with text "select * from customer where LAST_ORDER_ID = 

'4636'" using "My Database Login" delimiter ","

The SQL commander is used primarily to issue SQL commands to your database and 
get the resulting data in a the form of a string, with the specified delimiter between col-
umns, and return characters between the rows. 

Because SQLGrinder is threaded, the commander is the easiest way to send SQL to the 
database and get back results. Using an editor window to do the same thing requires 
more advanced AppleScript that uses timers to wait for each step to finish before con-
tinuing. You can find an AppleScript file that shows how this is done, called “Threaded 

Example” in the SQLGrinder AppleScript Dev Kit. This example file uses the on idle 
command, so to run it, you"ll need to save this script as an AppleScript application, set-
ting the Stay Open option to true, and then double-click on the application in the Finder.

51



Using Automator and SQLGrinder
This section describes using Automator with SQLGrinder. Available separately and as 
part of the SQLGrinder AppleScript Dev Kit are 3 Automator actions for communicating 
with any JDBC database using SQLGrinder as a conduit.

The  “Apply SQL” action takes a query in the form of a string from another action and 
passes it to the database associated with the SQLGrinder login that is specified. Results 
in the form of a string are returned, using the specified delimiter between columns and 
return characters between the rows.

The “Execute SQL” action takes the specified SQL statement and passes it to the data-
base associated with the SQLGrinder login that is specified. Like the “Apply SQL” ac-
tion, results in the form of a string are returned, using the specified delimiter between 
columns and return characters between the rows.

52



Finally, the “Send SQL Text” action allows any entered SQL text to be passed to another 
action. This action is primarily for testing your actions before adding them to workflows.

The source code and projects for all of these actions can be found in the SQLGrinder 
AppleScript Dev Kit.

53



Appendix A

Supported JDBC Drivers
This is the list of database drivers that have been verified to be compatible with 
SQLGrinder. If your database is not found in the list, that doesn"t mean that it is incom-
patible, it just means that it has not been officially verified and tested by Advenio.

SQLGrinder requires drivers to be at least JDBC 2 compliant to enable all functionality. 
If a driver you are using is not at least 2 compliant, features of SQLGrinder will not work. 
In some cases, the driver will be unusable. SQLGrinder provides a compatibility mode, 
both in preferences and for connections, that limits SQLGrinder to only using features 
found in JDBC 1.

Drivers bundled with SQLGrinder

• FrontBase

• MySQL

• OpenBase

• Oracle

• PostgreSQL

• Sybase

Other supported drivers

• DB2

• Hypersonic SQL

• Mckoi

• Microsoft SQL Server

• Primebase

• SQLite

DB2

IBM Toolbox for Java, JTOpen

54

A



“The "Toolbox" JDBC driver. This is shipped as part of the IBM Toolbox for 
Java (57xxJC1). It is implemented by making direct socket connections to 
the database host server. This happens to be the same route that the Client 
Access/400 ODBC driver takes. However, Client Access/400 is NOT re-
quired. The Toolbox runs on any JVM. The class name to register is 
com.ibm.as400.access.AS400JDBCDriver . The URL subprotocol is as400.”

http://www-1.ibm.com/servers/eserver/iseries/toolbox/downloads.htm

FrontBase

FrontBase JDBC Driver

www.frontbase.com

Hypersonic SQL (HSQL)

“HSQLDB is Java developers' best choice for development, testing and deploy-
ment of database applications. The latest HSQLDB 1.8.0 is fast, powerful and 
reliable -- more so than ever.”

http://hsqldb.org/

Mckoi

“Mckoi SQL Database is an SQL (Structured Query Language) Database man-
agement system written for the JavaTM platform. Mckoi SQL Database is opti-
mized to run as a client/server database server for multiple clients, however it 
can also be embedded in an application as a stand-alone database. It is highly 
multi-threaded and features an extendable object-oriented engine.”

http://mckoi.com/database/

Microsoft SQL Server

• jTDS

“TDS is an open source 100% pure Java (type 4) JDBC 3.0 driver for Micro-
soft SQL Server (6.5, 7, 2000 and 2005) and Sybase (10, 11, 12). jTDS is 
based on FreeTDS and is currently the fastest production-ready JDBC 
driver for SQL Server and Sybase. jTDS is 100% JDBC 3.0 compatible, 
supporting forward-only and scrollable/updateable ResultSets, concurrent 
(completely independent) Statements and implementing all the Database-
MetaData and ResultSetMetaData methods.”

55

http://www-1.ibm.com/servers/eserver/iseries/toolbox/downloads.htm
http://www-1.ibm.com/servers/eserver/iseries/toolbox/downloads.htm
http://www.frontbase.com
http://www.frontbase.com
http://hsqldb.org
http://hsqldb.org
http://mckoi.com/database/
http://mckoi.com/database/


http://jtds.sourceforge.net/

• Microsoft SQL Server 2000 Driver for JDBC

“The Microsoft® SQL Server™ 2000 Driver for JDBC™ is a Type 4 JDBC 
driver that provides highly scalable and reliable connectivity for the enter-
prise Java environment. This driver provides JDBC access to SQL Server 
2000, both 32 bit and 64 bit editions, through any Java-enabled applet, ap-
plication, or application server.”

http://tinyurl.com/3v7tc

MySQL

MySQL® Connector/J

“MySQL Connector/J is a native Java driver that converts JDBC (Java Da-
tabase Connectivity) calls into the network protocol used by the MySQL da-
tabase. It lets developers working with the Java programming language eas-
ily build programs and applets that interact with MySQL and connect all cor-
porate data, even in a heterogeneous environment. MySQL Connector/J is 
a Type IV JDBC driver and has a complete JDBC feature set that supports 
the capabilities of MySQL.”

http://www.mysql.com/products/connector/j/

OpenBase

OpenBase JDBC 3.0 Driver Client

http://store.openbase.com/downloads-Instructions.221.html

Oracle

• Oracle Database 10g Release 2 (10.2.0.1.0) drivers

• Oracle9i Release 2 (9.2.0.5) (9.2.0.4) (9.2.0.3) & (9.2.0.1) drivers

• Oracle8i Release 2 (8.1.7)

http://www.oracle.com/technology/software/tech/java/sqlj_jdbc/index.html

PostgreSQL

56

http://jtds.sourceforge.net
http://jtds.sourceforge.net
http://tinyurl.com/3v7tc
http://tinyurl.com/3v7tc
http://www.mysql.com/products/connector/j/
http://www.mysql.com/products/connector/j/
http://store.openbase.com/downloads-Instructions.221.html
http://store.openbase.com/downloads-Instructions.221.html
http://www.oracle.com/technology/software/tech/java/sqlj_jdbc/index.html
http://www.oracle.com/technology/software/tech/java/sqlj_jdbc/index.html


PostgreSQL JDBC Driver

“Allows Java programs to connect to a PostgreSQL database using stan-
dard, database independent Java code. It is a pure Java (Type IV) imple-
mentation, so all you need to do is download a jar file and you're on your 
way.

The driver provides are reasonably complete implementation of the JDBC 
3 specification in addition to some PostgreSQL specific extensions.”

http://jdbc.postgresql.org/

Primebase

http://www.primebase.com/en/index.html

SQLite

“SQLite is a small C library that implements a self-contained, embeddable, zero-
configuration SQL database engine.”

http://www.sqlite.org/

Notes on using SQLite type 3 driver with SQLGrinder:

There is a very good SQLite driver made available by Tim Anderson here:

http://www.itwriting.com/sqlitenotes.php

To use it, go to the web page above and click the "Mac OS X 10.4 JNI wrapper" 
link. Take the two files in the downloaded archive, named sqlite.jar and 
libsqlite_jni.jnilib and put them in the Library/Java/Extensions ( you may have to 
create these folders) folder in your home folder and restart SQLGrinder. 
SQLGrinder will automatically discover the driver and "SQLite" will appear in the 
drivers list in the login sheet. 

A couple of caveats: 

1. Your database file cannot have spaces in the name, this is a JDBC thing, not 
a Mac or SQLite thing.

2. The URL field in the sheet when SQLite is selected should look something 
like "jdbc:sqlite://Users/username/pathtodatabasefile, the URL checkbox 
should be checked, and no username or password are required.

57

http://jdbc.postgresql.org
http://jdbc.postgresql.org
http://www.primebase.com/en/index.html
http://www.primebase.com/en/index.html
http://www.sqlite.org
http://www.sqlite.org
http://www.itwriting.com/sqlitenotes.php
http://www.itwriting.com/sqlitenotes.php


Sybase

jConnect for JDBC

“jConnect provides high performance native access to the complete family of 
Sybase products including Adaptive Server Enterprise, Adaptive Server Any-
where, Adaptive Server IQ, and Replication Server. Through ASE/CIS (formerly 
OmniConnect), it provides transparent connectivity to more than twenty five en-
terprise and legacy database servers. It can also directly access Oracle, AS/400 
and others via DirectConnect.”

http://www.sybase.com/products/informationmanagement/softwaredeveloperkit/jc
onnect

58

http://www.sybase.com/products/informationmanagement/softwaredeveloperkit/jconnect%04
http://www.sybase.com/products/informationmanagement/softwaredeveloperkit/jconnect%04
http://www.sybase.com/products/informationmanagement/softwaredeveloperkit/jconnect%04
http://www.sybase.com/products/informationmanagement/softwaredeveloperkit/jconnect%04


Appendix B

Default Database JDBC Ports
Listed below are some of the default ports for common databases.

Database Port

Microsoft SQL Server 1433

MySQL 3306

Oracle 1521

PostgreSQL 5432

Sybase ASA 2638/11222

Sybase ASE 2048

59

B


